Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(2): 2419-2436, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38063959

RESUMO

The use of phyllite (Phy) instead of quartz in mixtures with bentonite (B) is recommended as a buffer material for engineering barriers in a geological repository of nuclear waste. The recommendation is based on experimentally determined sorption properties of various Phy/B mixtures. The adsorption capacity of Phy/B mixtures (Phy/B: 75/25, 50/50, and 25/75), the removal efficacy of Eu(III) ions (an analog for fissiongenic lanthanides and actinides), and the rate of their binding reaction were studied using the batch adsorption equilibrium and kinetic experiments at different Eu(III) initial concentrations, solution pH, and solution to adsorbent (L/S) ratio. The adsorption capacity of the Phy/B mixtures increased with the increased bentonite content in the mixture depending on the L/S ratio and solution pH. The highest increase in the adsorption capacity of the Phy/B mixtures compared to phyllite was observed for the Phy/B proportions of 25/75 and 50/50. The rate of the Eu(III) adsorption was the best fitted by the pseudo-second-order kinetic model indicating that the adsorption rate was controlled by chemisorption. The Sips model provided the best correlation of the adsorption experimental data, indicative of more than one adsorption site. The results of this study show the advantage of the Phy/B mixtures in immobilizing Eu and certain fission products by combining adsorption properties of the materials.


Assuntos
Resíduos Radioativos , Poluentes Químicos da Água , Bentonita/química , Adsorção , Quartzo , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
2.
PeerJ ; 8: e9324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566408

RESUMO

The adsorption behavior of Cr(III) and Cr(VI) ions onto laboratory-synthesized 2-line ferrihydrite was investigated under a batch method as a function of initial chromium concentration (0.1-1000 mg L-1) and pH (3.0 and 5.0). Moreover, the effect of the type of anion (chloride and sulfate) on Cr(III) adsorption was studied. The affinity of Cr(III) ions for the ferrihydrite surface depended on both the type of anion and pH of the solution and the maximum adsorption capacities decreased as follows: q (SO4 2-, pH 5.0) > q (SO4 2-, pH 3.0) > q (Cl-, pH 5.0) > q (Cl-, pH 3.0), and were found to be 86.06 mg g-1, 83.59 mg g-1, 61.51 mg g-1 and 40.67 mg g-1, respectively. Cr(VI) ions were bound to ferrihydrite in higher amounts then Cr(III) ions and the maximum adsorption capacity increased as the pH of the solution decreased and was 53.14 mg g-1 at pH 5.0 and 83.73 mg g-1 at pH 3.0. The adsorption process of Cr species was pH dependent, and the ions were bound to the surface of ferrihydrite by surface complexation. The Sips isotherm was the best-fit model to the results obtained from among the four isotherm models used, i.e., Freundlich, Langmuir, Dubinin-Radushkevich and Sips, indicating different adsorption centers participate in Cr uptake. In order to assess the bonding strength of the adsorbed chromium ions the modified BCR procedure, dedicated to the samples with a high iron content, was used. The results of the sequential extraction showed that Cr(III) ions were bound mainly in the immobile residual fraction and Cr(VI) ions were bound in the reducible fraction. The presence of Fe (oxyhydr)oxides in soil and sediments increases their adsorption capacity for Cr, in particular for hexavalent Cr in an acid environment due to their properties (high pHPZC).

3.
Sci Total Environ ; 735: 139526, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32480156

RESUMO

A geophysical survey conducted in the remote forest glade, located in the Izery Mountains (SW Poland), revealed the existence of an anthropogenic layer of historical glass wastes dumped in this area during the activity of a glass factory in the 18th and 19th centuries and domestic wastes dumped during the second part of the 20th century. The aim of the study was assessment of potential ecological risk related to the release of potentially toxic elements to the soil, groundwater and surface waters. The assessment was done on the base of classical geochemical analysis supported by calculation of environmental indices as well as on mobility of elements (leaching test and BCR sequential extraction). As an innovative aspect in the geostatistical interpretation of the data, some magnetic parameters (magnetic susceptibility-χ, χ/Fe ratio) were also used. It allowed for a better understanding of the relationship of PTEs with various forms of iron. The BCR sequential extraction found that among the PTEs, only Zn (up to 43%) was in a potentially mobile fraction probably occurring in ionic form, associated with iron oxides only by surface adsorption forces. The leaching has shown a slight increase in Zn and Cu content in the surface waters; however, it was not considered to be a real ecological threat because the pH of the waste material and soil cover is >6.0 and the scenario of a radical decrease in pH is rather unrealistic. The other PTEs were associated with more stable E2, E3 and E4 fractions. Zinc, similar to Ni, Co and Cu in waste samples, was highly correlated with magnetic parameters (χ and χ/Fe). It means that a considerable part of these metals was associated with ferrimagnetic iron oxides, although they can also occur in the form of inclusions in aluminosilicates and enclosed in glassy phases.

4.
J Contam Hydrol ; 232: 103606, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32081515

RESUMO

In recent years, there has been a growth in the number of products containing Ag nanoparticles (AgNPs) in many areas and their use suggests that the water-soil environment may be exposed to the contaminant with different Ag species. Therefore, the sorption of two Ag forms (i.e. Ag(I) ions and nanoparticles - AgNPs) on clay minerals (montmorillonite and kaolinite) and iron (oxyhydr)oxides (ferrihydrite) as a function of solution:mineral ratio (100:1, 250:1, 500:1), solution pH (3.0, 5.5 and 7.0) and initial Ag concentration (0.1-100 mg/dm3) was studied using batch method. In addition the binding strength/mobility of the bonded Ag species was researched. The results show a great sorption potential of clay minerals for both Ag forms and lower sorption capacity of ferrihydrite, in particular for Ag(I) ions. The maximum sorption capacities of montmorillonite, kaolinite and ferrihydrite estimated from three-parameter isotherm model of Sips were 94.39 mg/g, 117.8 mg/g and 26.48 mg/g for AgNPs and 17.92 mg/g, 21.14 mg/g and 3.072 mg/g for Ag(I) ions, respectively. Aggregation process plays an important role in sorption and mobility of AgNPs. The sequential extraction study indicated different binding mechanisms of the Ag forms onto the clay minerals and ferrihydrite, which depended on the active sites of minerals as well as the Ag species nature in the solution. Ag(I) was weakly bound by clay minerals but presence of iron (oxyhydr)oxides decreased the Ag(I) mobility and bioavailability. On the other hand, AgNPs bound with the active centers of minerals in a very strong way and were not able to release into water. The study of the binding of Ag forms by clay minerals and (oxyhydr)oxides allows to determine the influence of their physicochemical and structural properties, including e.g. pore size on Ag sorption. These results allow these properties to be taken into account in the study of environmental samples, including waters and soils. Moreover, the results showed that in the study of behavior of Ag forms in contact with the minerals, in addition to the sorption capacity, the susceptibility to their release is very important. Studies on sorption/desorption of AgNPs and Ag(I) ions as a form of oxidation of AgNPs is important for understanding the transport and fate of the Ag species in soil, sediments and surface water because of different their behavior in contact with the minerals.


Assuntos
Nanopartículas Metálicas , Prata , Adsorção , Silicatos de Alumínio , Argila , Minerais
5.
Artigo em Inglês | MEDLINE | ID: mdl-31244375

RESUMO

The present study shows sorption capacity of bentonite from the Slovak Jelsový Potok deposit for the anionic dye (Acid Black 1) from aqueous solutions and uses it as an effective and economical adsorbent for the removal of anionic dye. The laboratory experiments were carried out in batch method at 3 different sorbent doses (20, 10 and 5 g L-1) and an initial concentration of dye ranging from 1 to 1,000 mg L-1. The adsorption equilibria data were fitted by Freundlich, Langmuir, Dubinin-Radushkevich and Temkin isotherms. The Langmuir equation provided the best description for the sorption, indicating that adsorption occurred on a mono-layered surface. The maximum sorption capacity of bentonite has been estimated as 31.29 mg g-1. Moreover, the results showed that non-linear method could be a better way to obtain the isotherm parameters. The pseudo-first- and pseudo-second-order equations have been applied for the determination of time effect on sorption/removal of dye from solution. The highest determination coefficient values were observed for the pseudo-second-order model, suggesting chemical character of the adsorption process. Acid Black 1 was probably bound through chemisorption by forming hydrogen bonds between the Si-OH and Al-OH groups in the bentonite and the -NH, -NH2 and -OH groups in the dye.


Assuntos
Negro de Amido/análise , Bentonita/química , Modelos Teóricos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Águas Residuárias/química
6.
J Environ Manage ; 214: 295-304, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29533827

RESUMO

The present study focused on the use of the dry mass of the macrophyte Callitriche cophocarpa as an effective biosorbent for chromium removal from concentrated solutions, typical for industrial effluents. In order to evaluate the usability of C. cophocarpa as the Cr(III) sorbent, its detailed physicochemical characterization has been performed as well as the preliminary adsorption studies. The biosorbent was characterized by specific surface area (SSA), porosity, total organic carbon (TOC), inorganic content as well as the cation exchange capacity (CEC), dominant exchangeable cations and anion exchange capacity (AEC), point of zero charge (pHpzc) and buffering capacity. The effect of the initial chromium concentration, solution pH and co-existing anions on the sorption effectiveness have been investigated. Based on theoretical isotherm models, the maximum adsorption capacity of the dry C. cophocarpa has been determined as 77.1 mg Cr(III)/g. Finally, the strength of Cr-binding onto the plant biomass has been evaluated using the BCR extraction method, stating that chromium was strongly and - under environmental conditions - irreversibly bound to the plant biomass.


Assuntos
Cromo/isolamento & purificação , Purificação da Água , Adsorção , Biomassa , Cromo/química , Concentração de Íons de Hidrogênio , Cinética , Plantas , Porosidade
7.
Chemosphere ; 136: 211-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26022284

RESUMO

Due to their unique molecular architecture translating into numerous every-day applications, carbon nanotubes (CNTs) will be ultimately an increasingly significant environmental contaminant. This work reviews qualitative/quantitative analyses of interactions of various types of CNTs and their chemically modified analogues with aqueous/aquatic media containing organic and inorganic contaminants and selected organisms of aquatic ecosystems. A special emphasis was placed on physicochemical interactions between CNTs as adsorbents of heavy metal cations and aromatic compounds (dyes) with its environmental consequences. The studies revealed CNTs as more powerful adsorbents of aromatic compounds (an order of magnitude higher adsorption capacity) than metal cations. Depending on the presence of natural organic matter (NOM) and/or co-contaminants, CNTs may act as Trojan horse while passing through biological membranes (in the absence of NOM coordinating metal ions). Nanotubes, depending on flow conditions and their morphology/surface chemistry, may travel with natural waters or sediment with immobilized PAHs or metals and/or increase cyto- and ecotoxicity of PAHs/metal ions by their release via competitive complexation, or cause synergic ecotoxicity while adsorbing nutrients. Additionally, toxicity of CNTs against exemplary aquatic microorganisms was reviewed. It was found for Daphnia magna that longer exposures to CNTs led to higher ecotoxicity with a prolonged CNTs excretion. SWCNTs were more toxic than MWCNTs, while hydrophilization of CNTs via oxidation or anchoring thereto polar/positively charged polymer chains enhanced stability of nanotubes dispersion in aqueous media. On the other hand, bioavailability of functionalized CNTs was improved leading to more complex both mechanisms of uptake and cytotoxic effects.


Assuntos
Organismos Aquáticos , Ecossistema , Nanotubos de Carbono/química , Poluentes Químicos da Água/química , Adsorção , Animais , Corantes , Daphnia , Meio Ambiente , Metais Pesados , Compostos Orgânicos
8.
Arch Environ Contam Toxicol ; 64(3): 410-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23247557

RESUMO

The aim of the present study was to investigate the binding strength of chromium (Cr) ions to aquatic macrophyte Callitriche cophocarpa. Shoots of the plants were incubated in a natural water solution containing Cr(III) or Cr(VI) at a concentration ranging from 0.5 to 4 mM under laboratory conditions. We found that C. cophocarpa has an extremely high capacity to bind Cr. The average level of accumulation reached 28,385 or 7,315 mg kg(-1) dry weight for plants incubated with Cr(III) or Cr(VI), respectively. Shoots incubated in a 0.5 mM concentration of Cr(III) for 5 days removed almost 100 % of the metal from solution. The major pool of the bound Cr(III) ions follows the strongest mechanism of metal-binding to an organic matter. In contrast, we found that only 25 % of Cr(VI) ions are bound into the metallo-organic compounds and 57 % of Cr(VI) exists in an easily remobilizable form. Activity of a photosynthetic electron transport (as F V/F M) was evaluated with respect to the Cr-binding mechanism. Our results contribute to the development of knowledge on processes controlling bioremediation of heavy-metallic compounds in aquatic systems.


Assuntos
Compostos de Cromo/isolamento & purificação , Compostos Organometálicos/isolamento & purificação , Brotos de Planta/crescimento & desenvolvimento , Plantago/crescimento & desenvolvimento , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Biodegradação Ambiental , Brotos de Planta/química , Plantago/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA